Crystal Structure and Magnetic Properties of a New Form of NH₄MnFeF₆

M. LEBLANC, G. FEREY, Y. CALAGE,* AND R. DE PAPE

Laboratoire des Fluorures et Oxyfluorures Ioniques, ERA 609, and * Laboratoire Mössbauer, ERA 682, Faculté des Sciences, Route de Laval, 72017 Le Mans, Cedex, France

Received August 2, 1982; and in revised form October 11, 1982

The hydrothermal synthesis at 380°C, 200 MPa of NH₄MnFeF₆, NH₄MnCrF₆, and RbMnFeF₆ leads to a new $AM^{11}M^{111}F_6$ structural type of orthorhombic symmetry with Z = 8. Lattice constants are found to be, respectively, a = 7.844 (4), b = 12.819 (8), c = 10.582 (6); a = 7.808 (5), b = 12.755 (9), c = 10.501(7); and a = 7.913 (5), b = 12.858 (9), c = 10.619 (5). The structure was solved for NH₄MnFeF₆ from 755 X-Ray reflections and refined to $R_{\omega} = 0.029$ in the space group $Pb2n-C_{2\nu}^{6}$. The network is built from edge-sharing MnFeF₁₀ bioctahedra connected to each other by their vertices. RbMnFeF₆ upon heating transforms irreversibly to the modified pyrochlore structure at 881 K. From magnetic and Mössbauer experiments, NH₄MnFeF₆ and NH₄MnCrF₆ are established to be antiferromagnetic with $T_N = 117.7 \pm$ 0.5 K and <6 K, respectively.

Introduction

Transition metal fluorides $AM^{II}M^{III}F_6$ crystallize in various structural forms: trirutile, modified pyrochlore, tetragonal bronze, or trigonal Na₂SiF₆ types. To obtain new structural species for this composition, hydrothermal synthesis—which frequently favors the growth of metastable or low temperature forms—was applied to the crystallization of NH₄MnFeF₆, NH₄MnCrF₆, and RbMnFeF₆.

Experimental

Prismatic single crystals of NH₄MnFeF₆, NH₄MnCrF₆, and RbMnFeF₆ were grown by hydrothermal synthesis. The method was previously described (1): binary transition metal fluorides MnF₂ and FeF₃ or CrF₃ are mixed with 5 M RbF or NH₄F solutions

0022-4596/83/040024-06\$03.00/0 Copyright © 1983 by Academic Press, Inc. All rights of reproduction in any form reserved. $(AF/M'F_2/M''F_3 = 1/1/1)$ in a platinum tube. After heating at 360°C, 200 MPa, for 3 days, and cooling of the autoclave, the crystals were isolated and characterized. Fluorine was analysed with a specific electrode, and metals by atomic absorption spectrometry (Table I).

Laue and Buerger precession photographs of the crystals show that reflections are consistent with space group $Pbcn-D_{2h}^{14}$ Refined lattice parameters (Å) are given in Table II, powder diffraction data for NH₄MnCrF₆ are presented in Table III.

 NH_4MnFeF_6 was used for the X-ray structure determination. Intensity data were collected on a CAD 4 Nonius diffractometer¹ with Mo K α radiation in the range

¹ Laboratoire de Cristallochimie Minérale (Professeur HARDY), Faculté des Sciences, Université de Poitiers (France).

TABLE I Chemical Analysis and Specific Gravity of NH4MnFeF6

<u> </u>	Exp.	Calc.
Mn	20.9(1.7) ^a	22.6
Fe	23.9(1.9)	23.0
F	47.9(2.4)	47.0
ρ	3.04(5)	3.03

^a Chemical analysis in wt% (specific gravity in g/cm³).

 $-9 \le h \le +9, -15 \le k \le +15, 0 \le 1 \le 12$ with no restrictive conditions. Operating features were graphite monochromator, 3° $\le \theta \le 25^{\circ}$; scan mode, $\omega - 2\theta$; scan range, s $= (1.80 + 0.45 \tan 2\theta)^{\circ}$; scintillation counter aperture, 3.00 mm; scanning speed, v = $(20.1166/NV)^{\circ}$ min⁻¹ with NV integers.

Intensities treatment and structure determination were carried out with SHELX program (2). A total of 2807 reflections were corrected for absorption, using the numerical Gauss method; the transmission factor varied from 0.594 to 0.432. Averaging, in the Laue group *mmm*, leads to 755 independent reflections with $|F|/\sigma(|F|) \ge 6$. The atomic scattering factors were taken from "International Tables for X-ray Crystallography" (1968) for N°, F⁻, Fe³⁺, Mn²⁺ (3).

Structure Determination

Direct methods, using triple phase relations between F_{hkl} , were tested in the centrosymmetric Pbcn space-group. After F_{hkl} (l = 2n + 1) renormalisation they yielded a

FIG. 1. Projections of NH₄MnFeF₆ along [100] at $x = \frac{1}{4}$ (a) and $x = \frac{3}{4}$ (b); MnF₆ octahedra are dotted.

solution with a good figure of merit. Metallic atoms were located from the corresponding E map. The Fourier map, built from the set of refined metallic coordinates (R = 0.315) provided information on the location of fluorine and nitrogen atoms. Refinement of positional and isotropic thermal parameters for all nonhydrogen atoms, of secondary extinction and weighting, did not yield a satisfactory R value (R = 0.210). This fact, in spite of the lack of a piezoelectric signal, lead us to consider the noncentric space groups derived from *Pbcn*: non-

T.	A	B	L	E	Π
----	---	---	---	---	---

		a	b	С
Symmetry: orthorombic	NH₄MnFeF ₆	7.844(4)	12.819(8)	10.582(6)
Space group: $Pb2n - C_{2V}^6$	NH₄MnCrF ₆	7.808(5)	12.755(9)	10.501(7)
$\mathbf{Z} = 8$	RbMnFeF ₆	7.913(5)	12.858(9)	10.619(5)

TABLE III LATTICE SPACINGS AND OBSERVED X-RAY INTENSITIES FOR NH₄MnCrF₆

hkl	Iobs	$d_{ m obs}$	$d_{ m calc}$
020	15	6.382	6.378
021	60	5.446	5.451
002	65	5.246	5.250
121	4	4.461	4.470
102	4	4.342	4.357
022	6	4.049	4.054
200	100	3.894	3.904
220	10	3.325	3.330
040	95	3.188	3.189
221	5	3.171	3.174
202	35	3.130	3.133
023	90	3.068	3.069
042	10	2.725	2.726
004	4	2.627	2.625
142	4	2.572	2.573
213	2	2.546	2.553
3 1 1]	15	2 470	2.478
$2 4 0^{\circ}$	15	2.470	2.470
114	5	2.441	2.442
024)	25	2 429	2.428
150	25	2.428	2.425
241	8	2.403	2.404
151)	F	2 250	2.363
043 ^ĵ	3	2.359	2.357
312	10	2.291	2.294
204	5	2.178	2.178
134]	5	2 1 4 9	2.148
2 1 4	3	2.148	2.147
060	8	2.126	2.126
061	15	2.084	2.084
2 2 4	10	2.0(1	2.062
313	10	2.061	2.061
243	4	2.017	2.018
0 2 5]	20	1.005	1.995
153	20	1.995	1.993
062	15	1.970	1.971
400	40	1.950	1.952
162	4	1.911	1.911

standard $P2_1cn-C_{2v}^9$, $Pb2n-C_{2v}^6$, $Pbc2_1-C_{2v}^5$. Refinement of the structure with anisotropic thermal parameters for metallic atoms permitted selection of the Pb2n space group. Refinement in the two other space groups lead to nondefinite thermal vibration ellipsoids. Manganese and iron atom loca-

FIG. 2. MnFeF₁₀ unit in NH₄MnFeF₆

tions were deduced from metal-fluorine distances; this technique was used recently by Banks *et al.* (4) in the crystal structure determination of the tetragonal bronze—like phase KMnFeF₆. The residual fell to R = 0.021 ($R_{\omega} = 0.029$) with refinement of anisotropic thermal parameters for all non-hydrogen atoms.² Attempts to solve the true structure were unsuccessful.

Table IV presents the final results for the 20 independent positions. Characteristic interatomic distances are given in Table V.

Discussion of the Structure

Figure 1 presents the (100) projection of the structure at $x = \frac{1}{4}$ and $x = \frac{3}{4}$. The threedimensional network may be described in terms of binuclear MnFeF₁₀ groups formed by edge-sharing iron and manganese octahedra. Figure 2 shows this unit, its location with respect to the axes, and the so-called equatorial and axial fluorine atoms. These

² See NAPS document No. 04026 for 5 pages of supplementary material. Order from ASIS/NAPS. Microfiche Publications, P.O. Box 3513, Grand Central Station, New York, NY 10163. Remit in advance \$4.00 for microfiche copy or for photocopy, \$7.75 up to 20 pages plus \$30 for each additional page. All orders must be prepaid. Institutions and Organizations may order by purchase order. However, there is a billing and handling charge for this service of \$15. Foreign orders add \$4.50 for postage and handling, for the first 20 pages, and \$1.00 for additional 10 pages of material. \$1.50 for postage of any microfiche orders.

TABLE IV

Final Atomic Coordinates and Equivalent Temperature Factors in $NH_4MnFeF_6^{a,b}$

Atom	Site	x	у	z	Beq. (Å ²)
Fel	4c	0.2489(1)	0.1	0.0737(1)	0.71(9)
Fe2	4c	0.2502(1)	0.3775(1)	0.5745(1)	0.50(8)
Mn1	4c	0.7509(1)	0.0956(2)	0.0719(1)	0.79(9)
Mn2	4c	0.7504(1)	0.3817(2)	0.5718(1)	0.59(8)
F 1	4c	0.2069(4)	0.1492(4)	0.2439(4)	1.43(15)
F2	4c	0.2781(3)	0.4533(2)	0.1131(2)	1.04(13)
F3	4c	0.2219(4)	0.5247(4)	0.6162(4)	1.33(15)
F4	4c	0.2894(5)	0.2397(3)	0.5188(3)	1.52(15)
F5	4c	0.0121(5)	0.1156(4)	0.0360(5)	1.95(15)
F6	4c	0.0103(4)	0.3634(4)	0.5397(4)	1.20(13)
F7	4c	0.2223(4)	0.3249(3)	0.7432(4)	1.00(14)
F8	4c	0.7178(4)	0.4317(3)	0.0982(4)	1.12(15)
F9	4c	0.7739(4)	0.5478(3)	0.6000(4)	1.03(14)
F10	4c	0.7063(4)	0.2393(2)	0.4897(2)	1.74(14)
F11	4c	0.4900(4)	0.0837(3)	0.1049(5)	1.52(16)
F12	4c	0.4877(4)	0.3887(3)	0.6091(4)	1.48(15)
AM 1	2a	0	0.3423(5)	+	1.23(12)
AM2	2a	0	-0.1838(5)	4	0.87(20)
AM3	2b	Ō	0.1201(6)	3	1.98(12)
AM4	2b	0	-0.3288(6)	7	1.95(23)

^a Estimated standard deviations are given in parenthesis. ^b Wyckoff notation, symmetry, and coordinates of general and special equivalent positions for *Pb2n* space group

4 <i>c</i>	1	xy z	$\frac{1}{2} - x \frac{1}{2} + y z$
		$\bar{x}y_2 - z$	$\frac{1}{2} + x \frac{1}{2} + y \frac{1}{2} - z$
2b	2	0у 🖁	$\frac{1}{2}$ $\frac{1}{2}$ + y $\frac{1}{4}$
2 <i>a</i>	2	0y ‡	$\frac{1}{2}$ $\frac{1}{2}$ + y $\frac{1}{4}$

bioctahedra, slightly tilted from the *a* axis (approximately 13°), are linked to six similar groups by opposite equatorial vertices along *b* and *c*, and by axial vertices along *a*. At $x = \frac{1}{4}$ and $x = \frac{3}{4}$, they build infinite layers

TABLE V Characteristic Interatomic Distances (Å) in NH4MnFeF6

Octahedron of Fe(1)	Octahedron of Fe(2)		
Fe1-F1 1.936(4)	Fe2-F3 1.949(4)		
Fe1-F2 1.939(3)	Fe2-F4 1.891(4)		
Fe1-F5 1.916(4)	Fe2-F6 1.919(3)		
Fe1-F9 1.962(4)	Fe2-F7 1.922(3)		
Fe1-F10 1.937(4)	Fe2-F8 1.978(3)		
Fe1-F11 1.927(3)	Fe2-F12 1.909(3)		
$\overline{\mathbf{d}}_{\mathrm{Fel}-\mathrm{F}} = 1.936$	$\overline{d}_{Fe2-F} = 1.928$		
$d_{F2-F9} = 2.568(6)$	$d_{F3-F8} = 2.629(6)$		
$\overline{\mathbf{d}}_{\mathbf{F}-\mathbf{F}} = 2.734$	$\overline{d}_{F-F} = 2.726$		
Octahedron of Mn(1)	Octahedron of Mn(2)		
Mn1-F1 2.096(4)	Mn2–F2 2.175(3)		
Mn1–F3 2.199(4)	Mn2–F6 2.084(3)		
Mn1-F4 2.099(4)	Mn2-F7 2.095(3)		
Mn1-F5 2.095(4)	Mn2-F9 2.125(4)		
Mn1–F8 2.157(3)	Mn2-F10 2.059(4)		
Mn1-F11 2.083(3)	Mn2-F12 2.094(3)		
$\overline{\mathbf{d}}_{MnI-F} = 2.121$	$\overline{\mathbf{d}}_{Mn2-F} = 2.105$		
$\overline{\mathbf{d}}_{\mathrm{F-F}}$ = 2.996	$\overline{\mathbf{d}}_{\mathrm{F-F}} = 2.974$		

connected by axial F_{ax} , with alternating tiltings along three axes and alternating (Mn, Fe) disposition along *a* and *c*. Thus, each metallic octahedron is surrounded by five octahedra of the other metallic species. Ammonium ions adopt 12 coordination, existing in hexagonal close packing.

The large difference between ionic radii

FIG. 3. Thermal variation of the inverse magnetic susceptibility (1/emu g⁻¹) of NH₄MnFeF₆.

FIG. 4. Thermal variation of the magnetic hyperfine field for NH_4MnFeF_6 .

of Mn^{2+} (0.83 Å) and Fe³⁺ (0.64 Å) (5) implies a strong distorsion of both metallic octahedra (Table V).

Further distance considerations show that the fluorine atoms which form the edge between manganese and iron octahedra present the shortest fluorine-fluorine distances, but correspond to the longest metal-fluorine distances (Table V).

Very few fluorides with M_2F_{10} units are known. In Ba₂Ni₃F₁₀ (6) these groups connect planes containing rutile chains. In BaMnFeF₇ (7), FeF₆ octahedra ensure bridging between Mn₂F₁₀ entities. By contrast, numerous oxides, particularly niobates or tantalates, adopt a wide range of structures containing M_2O_{10} units. These groups, tied together by vertices or edges, build up *cis* or *trans* infinite files, or rings. Orthorhombic CaTa₂O₆ (8), and the high temperature form (HT) of $BaNb_2O_6$ (9) furnish, respectively, examples of *cis* and *trans* files connected by vertices. Double *trans* files connected by edges are encountered in $BaTi_4O_9$ and in related compounds (10–13). Three membered rings form parts of the hexagonal $BaTa_2O_6$ structure (14).

Therefore, NH₄MnFeF₆ appears to be the first fluoride with trans chains of M_2F_{10} units. Its structure is closely related to that of HT-BaNb₂O₆, as roughly determined from X-ray powder diffraction. The structural difference relative to HT-BaNb₂O₆ derives from the cationic order between Mn²⁺ and Fe³⁺.

Structural Transformation

At 881 K, DTA experiments on RbMn FeF₆ show an irreversible endothermic phase transition from niobate to a modified pyrochlore type structure. When a solid state reaction is carried out between 823 and 1023 K and is followed by slow cooling, the distorted modified pyrochlore RbMn FeF₆ (a = 7.153(7) Å, b = 7.434(5) Å, c = 12.34(1) Å, $\beta = 125^{\circ}64(2)$) is the only form obtained (15); by contrast, hydrothermal synthesis under our experimental conditions, always leads to the structure presently described.

 NH_4MnFeF_6 and NH_4MnCrF_6 undergo decomposition before the structural transformation temperature is reached.

T (K)	$\frac{\delta^a}{(\text{mm sec}^{-1})}$	ΔEQ (mm sec ⁻¹)	$\frac{4\varepsilon^b}{(\text{mm sec}^{-1})}$	H (kOe)	Γ (mm sec ⁻¹)
295	0.460(2)	0.346(4)	_		0.30(1)
118	0.562(2)	0.391(4)			0.31(1)
77	0.56(1)		-0.42(4)	463(2)	0.32(1)
4.2	0.56(1)		-0.42(4)	581(2)	0.50(1)

TABLE VI Mössbauer Data of NH₄MnFeF₄

^a δ = isomer shift relative to Fe metal (T = 300 K).

^b ε = quadrupolar shift of the outer Zeeman lines.

Magnetic and Mössbauer Studies

A plot of inverse susceptibility χ^{-1} versus *T* for NH₄MnFeF₆ is shown in Fig. 3. It exhibits a flat minimum around 170 K and, even at 293 K, the Curie–Weiss law is not obeyed; thus, the molar Curie constant and θ_p value can not be obtained. Magnetization, measured by a vibrating sample magnetometer, indicates a superimposed parasitic ferromagnetism below T_N , with $\sigma_{4.2 \text{ K}}$ = 0.005(2) μ_B mole⁻¹. RbMnFeF₆ displays an inverse susceptibility curve similar to that of NH₄MnFeF₆. NH₄MnCrF₆ is antiferromagnetic with $T_N < 6$ K, $\theta_p = -8$ K and $C_{exp} = 6.45 \pm 0.10$ ($C_{th} = 6.25$).

Mössbauer experiments on NH₄MnFeF₆ provided an accurate determination of $T_{\rm N} =$ 117.7 ± 0.5 K and confirmed the three-dimensional magnetic ordering (16) with $\beta =$ 0.34 and D = 1.33. As deduced from bond lengths and the consideration of angles the two types of iron III sites are very similar. They cannot be distinguished by Mössbauer spectroscopy, due to the relative insensitiveness of iron III spectrum towards the surrounding (17). The thermal variation of their common hyperfine magnetic field is shown in Fig. 4; characteristic Mössbauer data are provided in Table VI. From the ε values, the angle between the magnetic hyperfine field direction and the main electric field gradient axis is probably 90°.

Conclusion

In this structure, magnetic interactions proceed from superexchange coupling. Fe-

F-Mn angles are close to 157, 136 and 102°. So, $\sim 180^\circ$, $\sim 90^\circ$, and intermediate couplings exist. The magnetic structure determination, scheduled at the ILL Grenoble, should specify the spin directions, particularly inside the bioctahedron, and correlate the Mössbauer resonance and magnetization results.

References

- 1. G. FEREY, M. LEBLANC, R. DE PAPE, M. PAS-SARET, AND M. BOTHOREL-RAZAZI, J. Cryst. Growth 29, 209 (1975).
- 2. G. M. SHELDRICK, SHELX, Program for crystal structure determination 1976, Univ. of Cambridge, England.
- "International Tables for X-ray Cyrstallography," Vol. IV, Kynoch Press, Birmingham (1968).
- 4. E. BANKS, S. NAKAJIMA, AND G. J. B. WILLIAMS, Acta Crystallogr. Sect. B 35, 46 (1979).
- 5. R. D. SHANNON, Acta Crystallogr. Sect. A 32, 751 (1976).
- 6. M. LEBLANC, G. FEREY, AND R. DE PAPE, J. Solid State Chem. 33, 317 (1980).
- 7. H. HOLLER, D. BABEL, M. SAMOUEL, AND A. DE KOZAK, J. Solid State Chem. 39, 345 (1981).
- 8. L. JAHNBERG, Acta Chem. Scand. 71, 2548 (1963).
- 9. F. GALASSO, G. LAYDEN, AND G. GANUNG, Mat. Res. Bull. 3, 397 (1968).
- 10. K. LUKAZEWICZ'S, Roczn. Chem. 31, 1111 (1957).
- 11. A. D. WADSLEY, Acta Crystallogr. 17, 623 (1964).
- 12. Y. PIFFARD, Thèse, 25 Nov. 1980. Nantes (France).
- 13. B. M. GATEHOUSE AND M. C. NESBIT, J. Solid State Chem. 39, 1 (1981).
- 14. G. K. LAYDEN, Mat. Res. Bull. 3, 349 (1968).
- 15. C. JACOBONI, Thèse d'Etat, Paris VI (1976).
- G. K. WERTHEIM, "Mössbauer Effect Methodology," Vol. IV, p. 159, Plenum, New York (1968).
- 17. N. N. GREENWOOD, F. MENIL, AND A. TRES-SAUD, J. Solid State Chem. 5, 402 (1972).